Conceptual Physics : Embedded Inquiry ### **Conceptual Strand** *Understandings about scientific inquiry and the ability to conduct inquiry are essential for living in the* 21st century. ## **Guiding Question** What tools, skills, knowledge, and dispositions are needed to conduct scientific inquiry? | Course Level Expectations | Checks for Understanding | |---|---| | CLE 3237.Inq.1 Recognize that science is a progressive endeavor that reevaluates and extends what is already accepted. | ✓ 3237.Inq.1 Develop a testable question for a scientific investigation. | | CLE 3237.Inq.2 Design and conduct scientific investigations to | ✓ 3237.Inq.2 Develop an experimental design for testing a hypothesis. | | explore new phenomena, verify previous results, test how well a theory predicts, and compare opposing theories. | ✓ 3237.Inq.3 Select appropriate independent, dependent, or controlled variables for an experiment. | | CLE 3237.Inq.3 Use appropriate tools and technology to collect precise and accurate data. | ✓ 3237.Inq.4 Perform an experiment to test a prediction. | | CLE 3237.Inq.4 Apply qualitative and quantitative measures to analyze data and draw conclusions that are free of bias. | ✓ 3237.Inq.5 Gather, organize, and transform data from an experiment into a table, graph, or diagram. | | | ✓ 3237.Inq.6 Analyze data from a table, graph, or diagram. | | CLE 3237.Inq.5 Compare experimental evidence and conclusions with those drawn by others about the same testable question. | ✓ 3237.Inq.7 Analyze and interpret the results of an experiment. | | CLE 3237.Inq.6 Communicate and defend scientific findings. | ✓ 3237.Inq.8 Apply knowledge and data-interpretation skills to support a conclusion. | - ✓ 3237.Inq.10 Analyze experimental results and identify possible sources of experimental error. - ✓ 3237.Inq.11 State a conclusion in terms of the relationship between two or more variables. - ✓ 3237.Inq.12 Compare the results of an experiment with what is already known about the topic under investigation. - ✓ 3237.Inq.13 Suggest alternative explanations for the same set of observations. - ✓ 3237.Inq.14 Formulate and revise scientific explanations and models using logic and evidence. # **Conceptual Physics: Embedded Technology & Engineering** #### **Conceptual Strand** Society benefits when engineers apply scientific discoveries to design materials and processes that develop into enabling technologies. #### **Guiding Question** How do science concepts, engineering skills, and applications of technology improve the quality of life? | Course Level Expectations | Checks For Understanding | |--|--| | CLE 3237.T/E.1 Explore the impact of technology on social, political, and economic systems. | ✓3237.T/E.1 Select appropriate tools to conduct a scientific inquiry. | | | ✓3237.T/E.2 Apply the engineering design process to construct a | | CLE 3237.T/E.2 Differentiate among elements of the engineering design cycle: design constraints, model building, testing, evaluating, | prototype that meets developmentally appropriate specifications. | | modifying, and retesting. | ✓3237.T/E.3 Explore how the unintended consequences of new technologies can impact human and non-human communities. | | CLE 3237.T/E.3 Explain the relationship between the properties of a | | | material and the use of the material in the application of a technology. | ✓3237.T/E.4 Present research on current engineering technologies that contribute to improvements in our daily lives. | | CLE 3237.T/E.4 Describe the dynamic interplay among science, | | | technology, and engineering within living, earth-space, and physical | ✓3237.T/E.5 Design a series of multi-view drawings that can be used | | systems. | by other students to construct an adaptive design and test its | | | effectiveness. | # **Conceptual Physics: Embedded Mathematics** ## **Conceptual Strand** Physics applies mathematics to investigate questions, solve problems, and communicate findings. ## **Guiding Question** What mathematical skills and understandings are needed to successfully investigate conceptual physics? | Course Level Expectations | Checks For Understanding | |--|---| | CLE 3237.Math.1 Understand the mathematical principles that underlie the science of physics. | ✓3237.Math.1 Use a variety of notations appropriately (e.g., exponential, functional, square root). | | CLE 3237.Math.2 Utilize appropriate mathematical equations and processes to solve basic physics problems. | ✓3237.Math.2 Select and apply an appropriate method for computing with real numbers, and evaluate the reasonableness of results. | | | ✓3237.Math.3 Apply and interpret rates of change from graphical and numerical data. | | | ✓3237.Math.4 Analyze graphs to describe the behavior of functions. | | | ✓3237.Math.5 Interpret results of algebraic procedures. | | | ✓3237.Math.6 Model real-world phenomena using functions and graphs. | | | ✓3237.Math.7 Articulate and apply algebraic properties in symbolic manipulation. | | | ✓3237.Math.8 Apply and communicate measurement concepts and relationships in algebraic and geometric problem-solving situations. | | | ✓3237.Math.9 Make decisions about units, scales, and measurement tools that are appropriate for problem situations involving measurement. | | | ✓3237.Math.10 Collect, represent, and describe linear and nonlinear data sets developed from the real world. | - ✓3237.Math.12 Interpret a data set using appropriate measures of central tendency. - ✓3237.Math.13 Choose, construct, and analyze appropriate graphical representations for a data set. - ✓3237.Math.14 Use real numbers to represent real-world applications (e.g., slope, rate of change, probability, and proportionality). - ✓3237.Math.15 Apply right triangle relationships including the Pythagorean Theorem and the distance formula. - ✓ 3237.Math.16 Use concepts of length, area, and volume to estimate and solve real-world problems. - ✓3237.Math.17 Demonstrate an understanding of rates and other derived and indirect measurements (e.g., velocity, miles per hour, revolutions per minute, and cost per unit). ## **Conceptual Physics : Standard 1 - Mechanics** ### **Conceptual Strand 1** The laws and properties of mechanics provide the foundations of Conceptual Physics. Guiding Question 1 How do the laws and properties of mechanics govern the basic understanding of physics concepts? | Course Level Expectations | Checks For Understanding | |---|--| | CLE 3237.1.1 Investigate fundamental physical quantities of mass and time. | ✓ 3237.1.1 Investigate, measure, and calculate position, displacement, velocity and acceleration. | | CLE 3237.1.2 Analyze and apply Newton's three laws of motion. | ✓ 3237.1.2 Analyze vector diagrams. | | CLE 3237.1.3 Differentiate among work, energy, and power. CLE 3237.1.4 Investigate kinematics and dynamics. CLE 3237.1.5 Investigate and apply Archimedes's Principle. CLE 3237.1.6 Explore Pascal's Principle. CLE 3237.1.7 Analyze applications of Bernoulli's Principle. | ✓ 3237.1.3 Explore characteristics of rectilinear motion and create distance-time graphs and velocity-time graphs. ✓ 3237.1.4 Investigate the characteristics of centripetal motion and centripetal acceleration. ✓ 3237.1.5 Evaluate the dynamics of systems in motion and collisions including friction, gravity, impulse and momentum, change in momentum and conservation of momentum. | | | ✓ 3237.1.6 Investigate projectile motion. ✓ 3237.1.7 Distinguish between mass and weight using SI units. ✓ 3237.1.8 Measure and calculate mechanical advantage of mechanical devices. ✓ 3237.1.9 Relate time to the independent variable of most experiments. ✓ 3237.1.10 Relate inertia, fore, or action-reaction forces to Newton's three laws of motion and distinguish among the three laws in various | scenarios. - ✓ 3237.1.11 Compare, contrast, and apply the characteristic properties of scalar and vector quantities. - \checkmark 3237.1.12 Investigate the definitions of force, work, power, kinetic energy and potential energy. - ✓ 3237.1.13 Analyze the characteristics of energy, and conservation of energy including friction, and gravitational potential energy. - \checkmark 3237.1.14 Investigate the buoyant force exerted on floating and submerged objects. - ✓ 3237.1.15 Investigate the apparent weight of an object submerged in a fluid. - \checkmark 3237.1.16 Explain why objects float or sink in terms of force or density. - ✓ 3237.1.17 Examine the motion of fluids. - ✓ 3237.1.18 Recognize the effects of Bernoulli's principle on fluid motion (e.g., lift, ball trajectories, and wind around/over object). ## **Conceptual Physics: Standard 2 - Thermodynamics** #### **Conceptual Strand 2** The principles and laws of thermodynamics are essential for understanding the concept of energy. Guiding Question 2 How do the laws of thermodynamics relate to understanding the conservation of energy? | Course Level Expectations | Checks For Understanding | |--|---| | CLE 3237.2.1 Explore the relationships among temperature, heat, and internal energy. | ✓3237.2.1 Investigate the relationship between temperature and kinetic energy. | | CLE 3237.2.2 Compare Fahrenheit, Celsius, and Kelvin temperature scales. | ✓3237.2.2 Distinguish among internal energy, temperature, and heat. | | CLE 3237.2.3 Investigate exchanges in internal energy. | ✓3237.2.3 Investigate heat changes using calorimetry. | | CDE 3237.2.3 Investigate exchanges in internal energy. | ✓3237.2.4 Investigate energy changes associated with heats of fusion and vaporization. | | | ✓3237.2.5 Explore thermal expansion and contraction. | | | ✓3237.2.6 Apply the Second Law of Thermodynamics to the Carnot engine. | | | ✓3237.2.7 Apply the Laws of Thermodynamics to atmospheric and climatic changes. | | | ✓3237.2.8 Recognize that absolute zero is the absence of molecular kinetic energy. | | | ✓3237.2.9 Relate the First Law of Thermodynamics as an application of the Law of Conservation of Energy to heat transfer through conduction, convection, and radiation. | # **Conceptual Physics : Standard 3 – Waves and Optics** ## **Conceptual Strand 3** *Investigating wave behavior reveals information about sound and light.* ### **Guiding Question 3** How does the wave model explain the phenomena of sound and light? | Course Level Expectations | Checks For Understanding | |--|--| | CLE 3237.3.1 Explore conditions associated with simple harmonic motion. | ✓ 3237.3.1 Investigate simple harmonic motion. | | CLE 3237.3.2 Investigate Hooke's law. | ✓ 3237.3.2 Explore Hooke's Law. | | CLE 3237.3.3 Understand wave mechanics. | ✓ 3237.3.3 Investigate and analyze wavelength, frequency and amplitude of longitudinal and transverse waves. | | CLE 3237.3.4 Examine the Doppler Effect. | ✓ 3237.3.4 Compare mechanical and electromagnetic waves. | | CLE 3237.3.5 Explore the characteristics and properties of sound. | ✓ 3237.3.5 Investigate reflection, refraction, diffraction, and interference of sound waves. | | CLE 3237.3.6 Describe the characteristics of the electromagnetic | | | spectrum. | ✓ 3237.3.6 Demonstrate the Doppler Effect. | | CLE 3237.3.7 Investigate the interaction of light waves. | ✓ 3237.3.7 Determine the speed of sound experimentally and describe how various materials and temperatures affect wave transmission. | | CLE 3237.3.8 Explore the optical principles of mirrors and lenses. | (2227 2 0) (| | CLE 3237.3.9 Investigate the phenomenon of color. | ✓ 3237.3.8 Measure spring constants. | | The second secon | ✓ 3237.3.9 Compare wave characteristics to natural auditory | | phenomer | ıa | |----------|----| |----------|----| - ✓ 3237.3.10 Explore properties of the electromagnetic spectrum. - ✓ 3237.3.11 Examine properties of light waves. - \checkmark 3237.3.12 Investigate reflection, refraction, diffraction, and interference of light waves. - ✓ 3237.3.13 Investigate the polarization of plane and curved mirrors. - \checkmark 3237.3.14 Use ray tracings to solve optics of mirrors and lenses problems. - ✓ 3237.3.15 Solve problems related to Snell's laws. - ✓ 3237.3.16 Investigate optical phenomena (e.g., mirage, optical illusions, and dichromatic lens effect). - ✓ 3237.3.17 Distinguish between coherent and incoherent light. - ✓ 3237.3.18 Examine the properties of lasers. - ✓ 3237.3.19 Explore the additive and subtractive properties associated with color formation. ## **Conceptual Physics: Standard 4- Electricity and Magnetism** #### **Conceptual Strand 4** Various tools and equipment can be used to investigate the interplay between magnetic fields and the generation of electricity. ## **Guiding Question 4** What force and energy concepts are needed to explain magnetism and electricity? | Course Level Expectations | Checks For Understanding | |--|--| | CLE 3237.4.1 Distinguish among electric forces, electric charges, and electric fields. CLE 3237.4.2 Explore static and current electricity. | ✓ 3237.4.1 Measure voltage, current, and resistance. ✓ 3237.4.2 Draw electric field lines, given a scenario of charged particles. | | CLE 3237.4.3 Investigate Ohm's law. | ✓ 3237.4.3 Draw and explain series and parallel circuits. | | CLE 3237.4.4 Compare and contrast series and parallel circuits. CLE 3237.4.5 Analyze components of electrical schematic diagrams. | ✓ 3237.4.4 Identify components of series and parallel circuits and solve problems related to voltage, current, and resistance. | | CLE 3237.4.6 Investigate magnetic poles, magnetic fields, and electromagnetic induction. | ✓ 3237.4.5 Build series and parallel circuits and describe how they function. ✓ 3237.4.6 Demonstrate and explain electromagnetic induction. | | | ✓ 3237.4.7 Sketch the magnetic field lines around a bar magnet. ✓ 3237.4.8 Create a simple electromagnet. | # **Conceptual Physics : Standard 5 - Nuclear Science** # **Conceptual Strand 5** A deep understanding of particle physics is accomplished by investigating the principles of nuclear science. **Guiding Question 5**What particle physics concepts explain nuclear science? | Course Level Expectations | Checks For Understanding | |--|---| | CLE 3237.5.1 Investigate the properties and structure of the atom. | ✓ 3237.5.1 Identify the parts of an atom. | | CLE 3237.5.2 Explore the dynamics of the nucleus: radioactivity, nuclear decay, radiocarbon/uranium dating, and half-life. | ✓ 3237.5.2 Describe the properties and location of subatomic particles. | | CLE 3237.5.3 Compare and contrast nuclear fission and nuclear fusion. | ✓ 3237.5.3 Explain how particles behave like waves. | | CLE 3237.5.4 Investigate quantum theory. | ✓ 3237.5.4 Describe three forms of radioactivity in terms of changes in atomic number or mass number. | | | ✓ 3237.5.5 Investigate the concept of half-life. | | | ✓ 3237.5.6 Write balanced equations for the three forms of radioactive decay. | | | ✓ 3237.5.7 Explain carbon-14 or uranium dating methods. | | | ✓ 3237.5.8 Distinguish between nuclear fission and nuclear fusion in terms of transmutation. | | | ✓ 3237.5.9 Investigate the history of nuclear science. |